Step 1 - Collecting Data
Open the Recipe for a Walk-through on How to Code
In this tutorial, we will go through the data collection phase and provide a guide to obtaining Token Metrics and market data from exchanges.
1.1 Preparation Before the Action
Here are the packages needed:
import requests
from pandas import json_normalize
from urllib.parse import urlencode
from typing import Dict, List, Union, Optional, Any
import warnings
warnings.filterwarnings("ignore")
Here is a valuable function built to help connect to our platform. Just enter your API key in <your API key>
and explore the desired endpoints.
API_key = '<your API key>'
def tm_API(endpoint: str, payload: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Obtain data from the Token Metrics Data API
Args:
endpoint (str): The endpoint of the API
payload (Optional[Dict[str, Any]], optional): The parameters to send to the API. Defaults to None.
Returns:
Dict[str, Any]: The response from the API
"""
if payload:
url = 'https://alpha.data-api.tokenmetrics.com/v1/' + endpoint + '?' + urlencode(payload)
else:
url = 'https://alpha.data-api.tokenmetrics.com/v1/' + endpoint
headers = {'Accept': 'application/json', 'Content-Type': 'application/json', 'api_key': API_key}
response = requests.get(url, headers=headers)
return response.json()
1.2 Obtain the Tokens Index from Tokens
Endpoint
Tokens
EndpointTokens Index is a table with the Name, Symbol, and ID.
Once we have all our tools ready, what do we need first? It would be the Tokens
!
As shown in our Guide
, all the tokens or symbol information are stored in the Tokens
endpoint. We can extract the token information with the following code:
endpoint = 'tokens'
params = {}
response = tm_API(endpoint,params)
coins = json_normalize(response['data'])
coins = coins.sort_values(by = 'TOKEN_ID').reset_index(drop = True)
coins[coins.NAME.isin(['Bitcoin','Ethereum','Litecoin'])].reset_index(drop = True)
Index | TOKEN_ID | SYMBOL | NAME |
---|---|---|---|
0 | 3306 | ETH | Ethereum |
1 | 3375 | BTC | Bitcoin |
2 | 3377 | LTC | Litecoin |
We filtered the table with three coins:
Bitcoin
,Ethereum
, andLitecoin
for demo purposes.
To ensure that this tutorial presents the entire process in an easily understandable format from a professional trader's perspective, we will use a simple strategy rather than complex ones. So, before moving on to the following steps, we aim to provide a clear overview of the process. Long-Short Single asset trading strategy
.
Here is an example of a simple Long-Short Single asset trading strategy
:
- We focus on
Bitcoin
only - There are only two positions :
Long
,Short
1.3 Obtain the Market Price from Exchange
import pandas as pd
import datetime as dt
import requests
Next, we need to collect the market quotes for Bitcoin
.
# Obtain data from the Binance US API
params = {'symbol': 'BTCUSDT',
'interval': '1d',
'startTime': int(dt.datetime(2020,5,2).timestamp())*1000,
'endTime': int(dt.datetime(2023,1,28).timestamp())*1000,
'limit': 1000}
r = requests.get('https://api.binance.us/api/v3/klines', params = params).json()
# Convert to pandas dataframe
col = ['Open time','Open','High','Low','Close','Volume','Close time','Quote asset volume','Number of trades',
'Taker buy volume','Taker buy quote asset volume','Ignore']
btcusdt = pd.DataFrame(r, columns = col)
btcusdt['Open time'] = btcusdt['Open time'].apply(lambda x: dt.datetime.fromtimestamp(x/1000)).dt.strftime('%Y-%m-%d')
btcusdt['Close time'] = btcusdt['Close time'].apply(lambda x: dt.datetime.fromtimestamp(x/1000)).dt.strftime('%Y-%m-%d')
# Clean up the data
btcusdt.rename(columns = {'Close time': 'Date'}, inplace = True)
btcusdt[['Open', 'High', 'Low', 'Close', 'Volume']] = btcusdt[['Open', 'High', 'Low', 'Close', 'Volume']].astype(float)
btcusdt = btcusdt[['Date','Open', 'High', 'Low', 'Close', 'Volume']]
btcusdt
We obtain the historical price of BTCUSDT
from Binance US
. After some data-cleaning steps, we get the following table:
Date | Open | High | Low | Close | Volume | |
---|---|---|---|---|---|---|
0 | 2020-05-10 | 9531.93 | 9569.31 | 8127.14 | 8726.30 | 600.659830 |
1 | 2020-05-11 | 8730.15 | 9162.08 | 8200.00 | 8561.03 | 399.574609 |
2 | 2020-05-12 | 8560.18 | 8973.14 | 8533.72 | 8810.00 | 153.606379 |
3 | 2020-05-13 | 8808.62 | 9398.12 | 8800.91 | 9295.00 | 167.297195 |
And here is the plot of the data:
fig = plt.figure(figsize=(10,5))
sns.lineplot(x=pd.to_datetime(btcusdt['Date']), y=btcusdt['Close'])
plt.title('BTC/USDT')
plt.savefig('../Plots/btcust.png')
1.4 Obtain the Data from Trader Grades
endpoint
Trader Grades
endpointOur Trader Grades
endpoint provides a comprehensive overview of price movements. This table can inspire many different trading strategies based on this endpoint.
endpoint = 'trader-grades'
params = {
'tokens': '3375',
'startDate': '2020-05-03T00:00:00.000Z',
'endDate': '2023-01-27T00:00:00.000Z',
'limit': 1000
}
r = tm_API(endpoint,params)
trader_grades = json_normalize(r['data'])
Once we extract the data from our API, we will only select the following features[['DATE','TA_GRADE','QUANT_GRADE','TM_TRADER_GRADE',]]
. Next, we will do a simple transformation on the data.
# select the columns we want
btc_tg = trader_grades[['DATE','TA_GRADE','QUANT_GRADE','TM_TRADER_GRADE',]]
# merge the data
data = pd.merge(btc_tg, btcusdt, left_on='DATE', right_on='Date', how='left').drop('Date', axis=1)
# do some transformations
data['DayReturnPCT'] = (data.Close/data.Close.shift(-1) - 1)*100
data['ta_gradePCT'] = (data['TA_GRADE']/data['TA_GRADE'].shift(-1) - 1)*100
data['quant_gradePCT'] = (data['QUANT_GRADE']/data['QUANT_GRADE'].shift(-1) - 1)*100
data['tm_trader_gradePCT'] = (data['TM_TRADER_GRADE']/data['TM_TRADER_GRADE'].shift(-1) - 1)*100
data['DailyReturnPCT'] = (data.Close/data.Open - 1)*100
Now we have collected all the data we need. Please refer to the btc_tg.csv
.
<class 'pandas.core.frame.DataFrame'>
Int64Index: 748 entries, 0 to 747
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 DATE 748 non-null datetime64[ns]
1 TA_GRADE 747 non-null float64
2 QUANT_GRADE 747 non-null float64
3 TM_TRADER_GRADE 746 non-null float64
4 Open 748 non-null float64
5 High 748 non-null float64
6 Low 748 non-null float64
7 Close 748 non-null float64
8 Volume 748 non-null float64
9 DayReturnPCT 747 non-null float64
10 ta_gradePCT 745 non-null float64
11 quant_gradePCT 745 non-null float64
12 tm_trader_gradePCT 743 non-null float64
13 DailyReturnPCT 748 non-null float64
dtypes: datetime64[ns](1), float64(13)
memory usage: 87.7 KB
Updated over 1 year ago